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Abstract 

A new lifetime model known as power generalized Akash distribution (PGAD), which extends 

generalized Akash (GA) distribution has been proposed in this paper. The PGAD was inspired by the 

wide use of the Akash and GA distributions in various applied areas. Some structural characteristics of 

the new model were studied such as moments, reliability, hazard rate function, survival function, Renyi 

entropy measure and order statistics.  The parameters of the model were obtained via the maximum 

likelihood estimation method. The flexibility and importance of the new distribution has been illustrated 

by its applications to two real datasets. Using BIC, AIC and -2Loglikelihood, it is obvious that the 

PGAD is more effective than Topp-Leone Lomax (TLLo), Generalized Akash (GA), Power Pranav (PP) 

and Power Transformed Power Inverse Lindley (APTPIL) distributions in modelling real lifetime data.  

 

Keywords: power transformation, Akash distribution, reliability, order statistics, Maximum likelihood 

estimator 

 

1. Introduction  

Recently, different lifetime distributions have been proposed for modeling survival (or “time-to-event”) 

data since the classical one parameter Lindley distribution (Lindley, 1958) lacks the flexibility required 

to model lifetime data exhibiting different shapes, such as, increasing, decreasing, bathtub, and 

a broad variety of monotone failure rates. Some of the recent lifetime distributions proposed by 

different researchers are Lomax-Cauchy distribution (Amalare et al., 2020). Shanker and Shukla (2020) 

proposed a new Quasi Sujatha distribution while Tesfay and Shanker (2019) introduced a generalized 

Sujatha distribution and New Generalized Poisson-Sujatha distribution proposed by Aderoju (2020). 

The authors studied the properties and applications of the distributions.  

Many researchers have developed different power transformation and other form of 
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generalization of Lindley, exponential, Weibull and other distributions. Mahdavi and Kundu (2016) 

introduced an extra parameter to a family of distributions for more flexibility. A special case was 

considered in details namely; one parameter exponential distribution. Various properties of the proposed 

distribution, including explicit expressions for the moments were derived. They also considered an 

extension of the two-parameter exponential distribution, mainly for data analysis purposes. This 

proposed distribution has several desirable properties, and they are quite similar to the corresponding 

properties of the well-known Gamma or Weibull family. One data analysis has been performed, and it 

is observed that the proposed model provides a better fit than some of the existing models. 

Asiribo et al. (2019) presented a four-parameter distribution known as the Lomax-Kumaraswamy 

distribution. The authors studied some properties of the model. The distribution is a positively skewed. 

“The implications of the plots for the survival function indicate that the Lomax-Kumaraswamy 

distribution could be used to model time or age-dependent events, where survival rate decreases with 

time or age. The performance of the Lomax-Kumaraswamy distribution was tested by using to two real 

datasets in the literature. The results showed that it can serve as an alternative distribution to model 

positively skewed datasets”, Asiribo et al. (2019). 

Yousof et al. (2019) proposed a new two parameter lifetime model called the Xgamma Weibull 

(XGW) distribution. Some of its mathematical properties including explicit expressions for the ordinary 

and incomplete moments generating function were derived. The authors discussed the method of 

maximum likelihood for estimating model parameters. An application has been shown to illustrate that 

their proposed model provides consistently better fit than the other competitive models.  

Umar and Zakari (2020) proposed Beta Odd Generalized Exponential (BOGE) distribution. 

Some mathematical properties of the model are derived. They presented and studied three special cases 

of the BOGE family of distribution. The authors studied the performance of the BOGE distribution 

through its application to two real datasets (Glass Fibres data and Precipitation data) and the results 

shown that it is better than some existing distributions. 

A two-parameter generalized Akash distribution was originally proposed by Shanker et al. (2018) 

from two-component mixture of gamma ሺ3, 𝜃ሻ and exponential ሺ𝜃ሻ distributions as follows:   

𝑓ሺ𝑦|𝛼,𝜃ሻ ൌ 𝑝𝑓ሺ𝑦|𝜃ሻ  ሺ1 െ 𝑝ሻ𝑓ሺ𝑦|3,𝜃ሻ, 

where the mixing proportion (p) is   𝑝 ൌ  
ఏమ

ఏାఈ
 .   

𝑓ሺ𝑦|𝜃ሻ ൌ 𝜃𝑒ିఏ௬ 

𝑎𝑛𝑑 

𝑓ሺ𝑦|3,𝜃ሻ ൌ 𝜃ଷ𝑦𝑒ିఏ௬ 

and the corresponding probability density function (pdf) of the generalized Akash distribution (GAD) 

was derived as  
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𝑓ሺ𝑦|𝛼,𝜃ሻ ൌ ቐ
𝜃ଷ

2𝛼  𝜃ଶ
ሺαyଶ  1ሻ𝑒ିఏ௬ ,              𝑓𝑜𝑟 𝑦,𝛼,𝜃  0

0,                          𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                                   ሺ1ሻ 

The density has a scale parameter ሺ𝛼ሻ and a shape parameter  ሺ𝜃ሻ.  

Furthermore, the cumulative density function (cdf) of (1) was given as: 

𝐹ሺ𝑦ሻ ൌ 1 െ ቈ1 
𝛼𝜃𝑦ሺ2  𝜃𝑦ሻ

𝜃ଶ  2𝛼
 𝑒ିఏ௬ ,   𝑦,𝛼, 𝜃  0                                                         ሺ2ሻ  

The goal of this paper is to derive a power generalized Akash distribution in order to get better 

flexibility compared to the other popular generalizations of Akash model. It would eventually be 

obvious that the proposed model contains certain sub-models such as Akash distribution, GAD and 

exponential distribution.  

Hence, we discussed the proposed model in section two while some of the mathematical 

properties are presented in section three. The MLE of the model’s parameters is discussed in section 

four and section five contains the application of the model to real lifetime data. Final conclusion is 

presented in section six. 

 

2. Materials and Methods  

We derive pdf of the power generalized Akash distribution as follows: 

A random variable X is said to follow a power generalized Akash distribution (PGAD) if:  

𝑋|𝛼,𝜃,𝜔 ~ 𝑃𝐺𝐴ሺ𝛼,𝜃,𝜔ሻ 

Such that 𝑓ሺ𝑥ሻ is the pdf of PGAD and 

න 𝑓ሺ𝑥ሻ𝑑𝑥 ൌ 1
ஶ


,          𝑓𝑜𝑟  𝛼,𝜃,𝜔  0. 

Hence, the PGAD is represented as 𝑃𝐺𝐴ሺ𝛼,𝜃,𝜔ሻ. 

Theorem 1: Power Transformation Method (Box & Cox, 1964); let Y be a non-negative variable with 

probability density function, 𝑓௬ሺ𝑦ሻ  and cumulative density function, 𝐹௬ሺ𝑦ሻ ; with the power 

transformation 𝑋 ൌ 𝑌ఠ
షభ

  the new corresponding probability density function (pdf) and cumulative 

density function (cdf) respectively become: 

𝑓ሺ𝑥ሻ ൌ 𝜔𝑥ఠିଵ𝑓ሺ𝑦ఠሻ                                                                                                                ሺ3ሻ 

𝐹ሺ𝑥ሻ ൌ 𝐹ሺ𝑦ఠሻ                                                                                                                            ሺ4ሻ 

Proof: Suppose   𝑌|𝛼,𝜃 ~ 𝐺𝐴ሺ𝛼,𝜃ሻ, then the pdf of random variable Y is given in (1). Substitute (1) 

and (2) into (3) and (4) respectively to obtain (5) and  (6)  as follows: 

𝑓ሺ𝑥|𝛼,𝜃,𝜔ሻ ൌ ቐ
𝜔𝜃ଷ𝑥ఠିଵ

2𝛼  𝜃ଶ
ሺαxଶఠ  1ሻ𝑒ିఏ௫

ഘ
,              𝑓𝑜𝑟 𝑥,𝛼,𝜃,𝜔  0

0,                                                   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                 ሺ5ሻ  

The density (5) has a scale parameter ሺ𝛼ሻ and a shape parameters  ሺ𝜃 𝑎𝑛𝑑 𝜔ሻ 
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𝐹ሺ𝑥ሻ ൌ 1 െ ቈ1 
𝛼𝜃𝑥ఠሺ2  𝜃𝑥ఠሻ

𝜃ଶ  2𝛼
 𝑒ିఏ௫

ഘ
,   𝑥,𝛼,𝜃,𝜔  0                                           ሺ6ሻ  

The (5) and (6) are the pdf and cdf of PGAD respectively. It can be shown clearly from (5) that 

න 𝑓ሺ𝑥ሻ

ஶ



𝑑𝑥 ൌ 1, 

this shows that  𝑓ሺ𝑥ሻ  is a true pdf. 

Special cases: 

When 𝜔 ൌ 1 𝑎𝑛𝑑 𝛼,𝜃  0; the pdf in (5) reduces to the base model (GAD).  

When 𝛼,𝜔 ൌ 1 𝑎𝑛𝑑 𝜃  0; it reduces to Akash distribution (Shanker, 2015).  

When 𝜔 ൌ 1,𝛼 ൌ 0 𝑎𝑛𝑑 𝜃  0; it reduces to the exponential distribution. 

 

The graphical representation of the shape of pdf and cdf of the proposed PGAD at varying values of the 

parameters are presented in Figures 1 and 2 respectively. 

 

Figure 1: Plots of the pdf of the PGAD for different values of 𝛼ො,𝜃 𝑎𝑛𝑑 𝜔ෝ. 
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Figure 2: Plots of the cdf of the PGAD for different values of 𝛼ො,𝜃 𝑎𝑛𝑑 𝜔ෝ. 

 

3. Mathematical Properties of Power Generalized Akash distribution 

We present the moments, reliability analysis, entropy and the order statistics of the Power Generalized 

Akash distribution in this section.  

3.1.  Moments 

Theorem 2: Suppose a random variable 𝑋    follows power Generalized Akash distribution, that is 

𝑋 ~ 𝑃𝐺𝐴ሺ𝛼,𝜃,𝜔ሻ,  then, the rth order moment about origin is given by: 

𝐸ሺ𝑋ሻ ൌ 𝜇 ൌ න 𝑥𝑓ሺ𝑥ሻ𝑑𝑥

ஶ



 

 

Proofs: Hence, the first four moments are obtained as: 

  𝐸ሺ𝑋ሻ ൌ 𝜇 ൌ න 𝑥
𝜔𝜃ଷ𝑥ఠିଵ

2𝛼  𝜃ଶ
ሺαxଶఠ  1ሻ𝑒ିఏ௫

ഘ
𝑑𝑥

ஶ



                                     ሺ7ሻ 

𝜇ଵ ൌ
ቆ𝛼𝜔𝛤 ቀ3 

1
𝜔ቁ  𝜃ଶ𝛤 ቀ

1
𝜔ቁቇ

ሺ2𝛼  𝜃ଶሻ𝜃ଵ ఠ⁄  

𝜇ଶ ൌ
ቆ𝛼𝛤 ቀ3 

2
𝜔ቁ  𝜃ଶ𝛤 ቀ

2  𝜔
𝜔 ቁቇ

ሺ2𝛼  𝜃ଶሻ𝜃ଶ ఠ⁄  

𝜇ଷ ൌ
ቆ𝛼𝛤 ቀ3 

3
𝜔ቁ  𝜃ଶ𝛤 ቀ

3  𝜔
𝜔 ቁቇ

ሺ2𝛼  𝜃ଶሻ𝜃ଷ ఠ⁄  

𝜇ସ ൌ
ቆ𝛼𝛤 ቀ3 

4
𝜔ቁ  𝜃ଶ𝛤 ቀ

4  𝜔
𝜔 ቁቇ

ሺ2𝛼  𝜃ଶሻ𝜃ସ ఠ⁄  

Note that, the variance (𝜎ଶ) of the random variable X can be obtained as: 

     𝜎ଶ ൌ 𝐸ሺ𝑋ଶሻ െ ሾ𝐸ሺ𝑋ଵሻሿଶ ൌ 𝜇ଶ െ ሾ𝜇ଵሿଶ 
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∴  𝜎ଶ ൌ ⎣
⎢
⎢
⎢
⎡

ሺ2𝛼  𝜃ଶሻ ቆ𝛼𝛤 ቀ3 
2
𝜔ቁ  𝜃ଶ𝛤 ቀ

2  𝜔
𝜔 ቁቇ െ

ቆ𝛼𝜔𝛤 ቀ3 
1
𝜔ቁ  𝜃ଶ𝛤 ቀ

1
𝜔ቁቇ

ଶ

𝜔ଶ

⎦
⎥
⎥
⎥
⎤

𝜃ଶ ఠ⁄ ሺ2𝛼  𝜃ଶሻଶ
 

The corresponding coefficient of variation (CV) of PGAD is obtained as: 

𝐶𝑉 ൌ
𝜎
𝜇ଵ

 

     ൌ ⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

𝜔𝜃ିଵ ఠ⁄

⎣
⎢
⎢
⎢
⎡

ሺ2𝛼  𝜃ଶሻ ቆ𝛼𝛤 ቀ3 
2
𝜔ቁ  𝜃ଶ𝛤 ቀ

2  𝜔
𝜔 ቁቇ െ

ቆ𝛼𝜔𝛤 ቀ3 
1
𝜔ቁ  𝜃ଶ𝛤 ቀ

1
𝜔ቁቇ

ଶ

𝜔ଶ

⎦
⎥
⎥
⎥
⎤

ሺ2𝛼  𝜃ଶሻ ቆ𝛼𝜔𝛤 ቀ3  1
𝜔ቁ  𝜃ଶ𝛤 ቀ1

𝜔ቁቇ
 

 

3.2.  Reliability Properties 

In this section, the main reliability characteristics are derived in terms of the survival function, 𝑆ሺ𝑥ሻ, as 

well as the hazard function, ℎሺ𝑥ሻ, of the PGAD.  

3.2.1. Survival Function 

The survival function is generally defined as the probability that an item does not fail prior to some 

time. It is expressed as: 

𝑆ሺ𝑥ሻ ൌ 1 െ 𝐹ሺ𝑥ሻ ൌ 1 െ ቊ1 െ ቈ1 
𝛼𝜃𝑥ఠሺ2  𝜃𝑥ఠሻ

𝜃ଶ  2𝛼
 𝑒ିఏ௫

ഘ
ቋ 

𝑆ሺ𝑥ሻ ൌ 1 
𝛼𝑥ఠ𝜃ሺ2  𝜃𝑥ఠሻ

2𝛼  𝜃ଶ
൨ 𝑒ିఏ௫

ഘ
 

 

3.2.2. Hazard rate function 

The hazard rate function can be expressed as the conditional probability of failure, given that it has 

survived to the time. It is given as: 

ℎሺ𝑥ሻ ൌ
𝑓ሺ𝑥ሻ
𝑆ሺ𝑥ሻ

 

ℎሺ𝑥ሻ ൌ
𝜔𝜃ଷ𝑥ఠିଵሺ1  𝑥ଶఠ𝛼ሻ

𝜃ଶ  𝛼ሺ2  2𝑥ఠ𝜃  𝑥ଶఠ𝜃ଶሻ
 

Figures 3 and 4 represent the graph of the survival function and hazard rate function of the Power 

Generalized Akash distribution, respectively, for varying values of the parameters α, θ and 𝜔.  

 



Journal of Statistical Modeling and Analytics  Vol 4(1), 1-13. 2022 
 

7 
 

 
Figure 3: Survival function of the PGAD at different values of the parameters. 

 

The graph of  𝑆ሺ𝑥ሻ  of the 𝑃𝐺𝐴ሺ𝛼,𝜃,𝜔ሻ  for different values of the parameters ሺ𝛼,𝜃,𝜔ሻ  in Figure 3 

shows that, the shapes of  𝑆ሺ𝑥ሻ is decreasing when 𝜃 → 0 𝑎𝑛𝑑 𝜔 → 0  while it is constant when 𝜃 →

∞ 𝑎𝑛𝑑 𝜔 → 1; this also shows the flexibility of PGAD. 

 

 
Figure 4: Hazard rate function of the PGAD at different values of the parameters. 

 

The graphs of the hazard rate function of the PGAD for different values of the parameters are given in 

Figure 4. The model exhibits both monotone increasing and decreasing failure rate characteristic. It 

decreases monotonically when 𝜔 → 0 and increases monotonically when  𝜔 → 1. 

 

3.3 Renyi’s Entropy 

An entropy of a random variable X is a measure of variation of uncertainty. One of the popular entropy 

measure is Renyi’s entropy (Rényi, 1961). Suppose a continuous random variable X follows the Power 

Generalized Akash probability with density function  𝑓ሺ𝑥ሻ, then Renyi’s entropy, 𝑅ுሺ𝑥ሻ, is defined 

as: 

𝑅ுሺ𝑥ሻ ൌ
1

1 െ 𝛾
𝑙𝑜𝑔නൣ𝑓ሺ𝑥ሻ൧

ఊ
𝑑𝑥

ஶ



                                             ሺ8ሻ 

           ൌ
1

1 െ 𝛾
𝑙𝑜𝑔න ቈ

𝜔𝜃ଷ𝑥ఠିଵ

2𝛼  𝜃ଶ
ሺαxଶఠ  1ሻ𝑒ିఏ௫

ഘ

ఊ

𝑑𝑥

ஶ
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         ൌ
1

1 െ 𝛾
log 

𝜔ఊ𝜃ଷఊ

ሺ2𝛼  𝜃ଶሻఊ
න 𝑥ሺఠିଵሻఊሺαxଶఠ  1ሻఊ𝑒ିఏఊ௫

ഘ
𝑑𝑥 

ஶ



൩  

𝐿𝑒𝑡  y ൌ xఠ   ⇒    x ൌ 𝑦
ଵ
ఠ    𝑑𝑥 ൌ

1
𝜔𝑦ఠିଵ

𝑑𝑦 

         ൌ
1

1 െ 𝛾
log 

𝜔ఊ𝜃ଷఊ

ሺ2𝛼  𝜃ଶሻఊ
න

1
𝜔
𝑦൫ఊି

ఊ
ఠൗ ାଵ ఠൗ ൯ିଵሺαyଶ  1ሻఊ𝑒ିఏఊ௫

ഘ
𝑑𝑦 

ஶ



൩ 

         ൌ
1

1 െ 𝛾
log 

𝜔ఊ𝜃ଷఊ

ሺ2𝛼  𝜃ଶሻఊ
න
𝑦൫ఊି

ఊ
ఠൗ ାଵ ఠൗ ൯ିଵ

𝜔
 

ஶ



൬
𝛾
𝑗
൰ ሺαyଶሻ𝑒ିఏఊ௬𝑑𝑦

ஶ

ୀ

 

         ൌ
1

1 െ 𝛾
log 

𝜔ఊ𝜃ଷఊ

ሺ2𝛼  𝜃ଶሻఊ
൬

𝛾
𝑗
൰
𝛼

𝜔

ஶ

ୀ

න 𝑦൫ଶାఊି
ఊ
ఠൗ ାଵ ఠൗ ൯ିଵ 

ஶ



𝑒ିఏఊ௬𝑑𝑦 

         ൌ
1

1 െ 𝛾
log 

𝜔ఊ𝜃ଷఊ

ሺ2𝛼  𝜃ଶሻఊ
൬

𝛾
𝑗
൰
𝛼

𝜔

ஶ

ୀ

𝛤൫2𝑗  𝛾 െ 𝛾
𝜔ൗ  1 𝜔ൗ ൯

ሺ𝜃𝛾ሻ൫ଶାఊି
ఊ
ఠൗ ାଵ ఠൗ ൯

 

 

3.4 Order Statistics 

Suppose  𝑋ଵ, 𝑋ଶ, . . . ,𝑋 is a random sample from PGA distribution, by definition, the kth order statistic, 

 𝑋ሺሻ can be expressed as: 

𝑓ሺሻሺ𝑥ሻ ൌ
𝑛!

ሺ𝑘 െ 1ሻ! ሺ𝑛 െ 𝑘ሻ!
𝑓ሺ𝑥ሻൣ𝐹ሺ𝑥ሻ൧

ିଵ
ൣ1 െ 𝐹ሺ𝑥ሻ൧

ି
                               ሺ9ሻ 

Substituting (5) and (6) into (8), we have   

𝑓ሺሻሺ𝑥ሻ   ൌ
𝑛!𝜔𝜃ଷ𝑥ఠିଵሺαxଶఠ  1ሻ𝑒ିఏ௫

ഘ

ሺ2𝛼  𝜃ଶሻሺ𝑘 െ 1ሻ! ሺ𝑛 െ 𝑘ሻ!
ቈ1 െ ቈ1 

𝛼𝜃𝑥ఠሺ2  𝜃𝑥ఠሻ

𝜃ଶ  2𝛼
 𝑒ିఏ௫

ഘ
 
ିଵ

ൈ  ቈ
𝑒ି௫

ഘఏሺ𝜃ଶ  𝛼ሺ2  2𝑥ఠ𝜃  𝑥ଶఠ𝜃ଶሻሻ
2𝛼  𝜃ଶ

 𝑒ିఏ௫
ഘ


ି

 

The first and nth orders are: 

𝑓ሺଵሻሺ𝑥ሻ ൌ
𝑛𝜔𝜃ଷ𝑥ఠିଵሺαxଶఠ  1ሻ𝑒ିఏ௫

ഘ

ሺ2𝛼  𝜃ଶሻ
ቈ
𝑒ି௫

ഘఏሺ𝜃ଶ  𝛼ሺ2  2𝑥ఠ𝜃  𝑥ଶఠ𝜃ଶሻሻ
2𝛼  𝜃ଶ

 𝑒ିఏ௫
ഘ


ିଵ

 

 

𝑓ሺሻሺ𝑥ሻ ൌ
𝑛𝜔𝜃ଷ𝑥ఠିଵሺαxଶఠ  1ሻ𝑒ିఏ௫

ഘ

ሺ2𝛼  𝜃ଶሻ
ቈ1 െ ቈ1 

𝛼𝜃𝑥ఠሺ2  𝜃𝑥ఠሻ

𝜃ଶ  2𝛼
 𝑒ିఏ௫

ഘ
 
ିଵ

 

 

4. Maximum Likelihood Estimation 

Suppose 𝑋ଵ, , . . . ,𝑋 is a random sample of size n from the PGAD, the maximum likelihood function of 
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PGAD can be expressed as: 

𝐿ሺ𝛼,𝜃,𝜔ሻ ൌෑ
𝜔𝜃ଷ𝑥

ఠିଵ

2𝛼  𝜃ଶ
൫𝛼𝑥

ଶఠ  1൯𝑒ିఏ௫
ഘ



ୀଵ

, 

hence, the log-likelihood is: 

𝑙𝑛𝐿 ൌ 𝑛𝑙𝑛ሺ𝜔ሻ  3𝑛𝑙𝑛ሺ𝜃ሻ  ሺ𝜔 െ 1ሻ𝑙𝑛𝑥



ୀଵ

െ 𝑛𝑙𝑛ሺ2𝛼  𝜃ଶሻ  ln൫𝛼𝑥
ଶఠ  1൯



ୀଵ

െ 𝜃𝑥
ఠ



ୀଵ

 

Differentiating the  𝑙𝑛𝐿 partially with respect to associated parameters we have 

𝜕𝑙𝑛𝐿
𝜕𝛼

ൌ െ
2𝑛

2𝛼  𝜃ଶ
𝑥

ଶఠ൫𝛼𝑥
ଶఠ  1൯

ିଵ


ୀଵ

ൌ 0                                                                       ሺ10ሻ 

𝜕𝑙𝑛𝐿
𝜕𝜃

ൌ
3𝑛
𝜃
െ

2𝑛𝜃
2𝛼  𝜃ଶ

െ𝑥
ఠ



ୀଵ

ൌ 0                                                                                            ሺ11ሻ 

𝜕𝑙𝑛𝐿
𝜕𝜔

ൌ
𝑛
𝜔
 lnሺ𝑥ሻ



ୀଵ


2𝛼𝑥

ଶఠlnሺ𝑥ሻ

𝛼𝑥
ଶఠ  1



ୀଵ

െ𝑥
ఠ



ୀଵ

lnሺ𝑥ሻ ൌ 0                                           ሺ12ሻ 

The Maximum Likelihood Estimates (MLEs), 𝛼ො, 𝜃  𝑎𝑛𝑑  𝜔ෝ of α, θ and 𝜔 are algebraic solutions 

of equation (10), (11) and (12) respectively. Obviously, analytical expressions for 𝛼ො, 𝜃  𝑎𝑛𝑑  𝜔ෝ   are not 

available. Therefore, we computed the MLEs numerically using the nloptr package in R software (R 

Core Team, 2020). 

5. Application 

The application of PGAD is here illustrated by applying it to two datasets. Its performance was 

compared with that of the Generalized Akash Distribution (GAD), Power Pranav Distribution (PPD) 

and Topp-Leone Lomax distribution (TLLoD).  We used Akaike Information Criteria (AIC), Consistent 

AIC (CAIC) and Bayesian Information Criteria (BIC) for the model selection criteria. Obviously, the 

model with the smallest value of the information criteria is the best. However, we have the -

2loglikelihood values (-2logL) presented as well. The pdf of the models considered in this study are 

presented in Table 1. 

 

Table 1: Some Existing Distributions 
Name of 

distributions 
Probability density functions Introducers / 

Authors 
Topp-Leone 
Lomax 
distribution 
(TLLoD) 

𝑓ሺ𝑥ሻ ൌ 2abcሺ1  𝑐𝑥ሻିሺଶାଵሻሾ1 െ ሺ1  𝑐𝑥ሻିଶሿିଵ Oguntunde et al. 
(2019) 

Generalized 
Akash 
Distribution 
(GAD) 

𝑓ሺ𝑥ሻ ൌ
𝜃ଷ

2𝛼  𝜃ଶ
ሺαyଶ  1ሻ𝑒ିఏ௬ 

Shanker et al. 
(2018) 
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Power Pranav 
Distribution 
(PPD) 

𝑓ሺ𝑥ሻ ൌ
𝜔𝜃ସ𝑥ఠିଵ

ሺ2  𝜃ସሻ
ሺ𝜃  𝑥ଷఠሻ𝑒ିఏ௫

ഘ
 

Shukla (2019) 

Alpha Power 
Transformed 
Power Inverse 
Lindley 
(APTPIL) 

𝑓ሺ𝑥ሻ

ൌ

⎩
⎪
⎨

⎪
⎧ logሺ𝛼ሻ 𝛽𝜃ଶ

ሺ𝛼 െ 1ሻሺ𝜃  1ሻ
ቆ

1  𝑥ఉ

𝑥ଶఉାଵ
ቇ 𝑒

ି
ఏ
௫ഁ

  ఈ
ቆభశ

ഇ
ሺഇశభሻೣഁ

ቇ
ష
ഇ
ೣഁ

, ఈவ,ఈஷଵ

𝛽𝜃ଶ

ሺ𝜃  1ሻ
ቆ

1  𝑥ఉ

𝑥ଶఉାଵ
ቇ 𝑒

ି
ఏ
௫ഁ

  
𝑖𝑓 𝛼 ൌ 1

 

 
Eltehiwy (2020) 

 

Dataset 1: The data are the survival times (in days) of 72 guinea pigs infected with virulent tubercle 

bacilli, observed and reported by Bjerkedal (1960). The data are as follows: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 2.16, 2.2
2, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 1.46, 1.53, 1.59, 1.
6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 1.08, 1.08, 1.09, 1.12, 1.1
3, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 4.32, 4.58, 5.55. 
 

Table 2: Comparison of the models fit to Dataset 1 
Models Parameter 

estimates 
-2logL AIC CAIC BIC 

PGAD 𝛼ො ൌ 46.8338 
𝜃 ൌ 1.5882 
𝜔ෝ ൌ 1.0659 

187.6308 
 

193.6308 193.9837 196.1841 

GAD 𝛼ො ൌ 85.032 
𝜃 ൌ 1.6782 

188.0386 
 

192.0386 192.2125 196.592 

PPD 𝛼ො ൌ 1.3489 
𝜃 ൌ 1.3002 

206.4012 
 

210.4012 210.5751 214.9545 

TLLoD 𝛼ො ൌ 3.7940 
𝜃 ൌ 21.8742 
𝛽መ ൌ 0.0271 

188.6663 
 

194.6663 195.0192 
 

197.2196 

 
The result of the analysis of the first dataset is provided in Table 2, which shows that the proposed 

PGAD fits the data better than the other distributions. However, it is worth to note that the AIC value 

of GAD (192.0386) is lower than that of PGAD (193.6308), the same cannot be said of BIC and ‘-

2logL’. This because AIC penalizes model with more parameter.   

Eltehiwy (2020) recently applied Alpha Power Transformed Power Inverse Lindley (APTPIL) 

on this same data. The author obtained the model’s AIC to be “207.931” (see Eltehiwy (2020) for 

details), which is far higher than that of PGAD (AIC = 193.63). Hence, the PGAD fits better than this 

recent model. 

 
Dataset 2: The data are service times of 63 aircraft windshield that had not failed at the time of 
observation. The unit for measurement is 1000h from Tahir et al. (2015). The data are:  
0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 
2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015,1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 3.102, 
0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500,1.010, 2.141, 3.622, 1.085, 0.313, 1.915, 
2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622,1.978, 3.003, 0.900, 2.053, 1.249, 2.464, 4.881, 
1.262, 2.543, 5.140. 
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Table 3: Comparison of Distributions for Dataset 2 

Models Parameter 
estimates 

-2logL AIC CAIC BIC 

PGAD 𝛼ො ൌ 0.9485 
𝜃 ൌ 0.8806 
𝜔ෝ ൌ 1.2867 

196.4145 
 

202.4145 202.8213 204.7007 

GAD 𝛼ො ൌ 4.2202 
𝜃 ൌ 1.2823 

199.1256 
 

203.1256 203.3256 207.4119 

PPD 𝛼ො ൌ 1.3489 
𝜃 ൌ 1.3002 

206.4012 
 

210.4012 210.5751 214.9545 

TLLoD 𝛼ො ൌ 1.8943 
𝜃 ൌ 28.1459 
𝛽መ ൌ 0.0125 

207.7056 
 

213.7056 214.1124 215.9919 

 
From Table 3, it has been shown that the PGAD fits the second dataset (aircraft windshield data) 

better than other distribution having the smallest values of the AIC, CAIC and BIC. Hence, it is clear 

that the proposed distribution is more flexible and provides a better fit than the other models in modeling 

lifetime data. 

 
6. Conclusion 

The power generalized Akash distribution is developed in this paper. Some of the basic statistical and 

mathematical properties of the proposed model are established, such as the moments, mean, variance, 

coefficient of variation, reliability, hazard, Rényi entropy and order statistics. The shape of the model 

could be decreasing or unimodal based on the values of 𝛼, 𝜃  and  𝜔. The behaviour of the survival 

function could be decreasing, increasing or constant. The maximum likelihood estimation method was 

used for estimating the parameters. Two real datasets are considered to demonstrate that the new 

distribution can provide consistent better fit than other known competitive distributions considered. We 

hope that the new distribution will attract wider applications in reliability, medical sciences and other 

areas of research.  

  

Acknowledgement 

The authors are very grateful to the Editorial team and the two reviewers for their careful reading of the 

article and for their valuable suggestions that have improved the manuscript greatly.  

 

Conflicts of Interest 

The authors declare no conflict of interest. 

 

References 

Aderoju, S.A (2020). A New Generalized Poisson-Sujatha Distribution and its Applications. Applied  

Mathematical Sciences, Vol.14, no.5, 229–234.  



Journal of Statistical Modeling and Analytics  Vol 4(1), 1-13. 2022 
 

12 
 

Amalare, A. A., Ogunsanya, A. S., Ekum, M. I.  and Owolabi, T. O. (2020). Lomax-Cauchy {Uniform}  

Distribution: Properties and Application to Exceedances of Flood Peaks of Wheaton River. 

Benin Journal of Statistics; Vol. 3, pp. 66– 81. 

Asiribo, O.E., Mabur, T. M.  and Soyinka, A. T. (2019). On the Lomax-Kumaraswamy distribution.  

Benin Journal of Statistics. Vol. 2, pp. 107–120. 

Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs infected with different doses of virulent   

tubercle bacilli. Am J Hyg, 72: 130-148. 

Box G.E.P. and Cox D.R. (1964). An analysis of transformations. Journal of the Royal Statistical Society.  

Series B (Methodological). Vol. 26, No. 2: 211–252. 

Eltehiwy, M. (2020). On the Alpha Power Transformed Power Inverse Lindley Distribution. J Indian  

Soc Probab Stat. 21, 201–224.  

Lindley, D.V., (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society,  

Series A 20, 102–107.  

Mahdavi, A. and Kundu, D. (2016): A New Method for Generating Distributions with an Application  

to Exponential Distribution, Communications in Statistics Theory and Methods, 13(46):6543–

6557.  DOI: 10.1080/03610926.2015.1130839.  

Oguntunde, P.E., Khaleel, M.A., Okagbue, H.I. and Odetunmibi, O.A. (2019). The Topp–Leone Lomax  

(TLLo) Distribution with Applications to Air-bone Communication Transceiver 

Dataset. Wireless Pers Commun, 109, 349–360. https://doi.org/10.1007/s11277-019-06568-8. 

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for  

Statistical Computing, Vienna, Austria. URL https://www.R-project.org. 

Rényi, A. (1961). On measure of entropy and information. Proceedings of the 4th Berkeley Symposium  

on Mathematical Statistics and Probability 1, University of California Press, Berkeley, 547-561. 

Shanker, R. (2015). Akash distribution and Its Applications. International Journal of Probability and  

Statistics. 4(3):65‒75. 

Shanker, R. and  Shukla, K.K. (2020). A New Quasi Sujatha Distribution. STATISTICS IN TRANSITION  

new series, Vol. 21, No. 3 pp. 53–71. 

Shanker, R., Shukla, K.K and Sigh, A.P (2018). A generalized Akash distribution. Biom Biostat Int J.  

7(1):18‒26. DOI: 10.15406/bbij.2018.07.00187. 

Shukla, K.K. (2019). Power Pranav Distribution and its Applications to Model Lifetime Data. Journal  

of applied quantitative methods. Vol. 14, Issue 2. 

Tahir, M. H., Cordeiro, G. M., Mansoor, M. and Zubair, M. (2015). The Weibull Lomax distribution:  

properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(2): 461 –480. 

Tesfay, M. and Shanker, R. (2019). Another Two-Parameter Sujatha Distribution with Properties and  

Applications. Journal of Mathematical Sciences and Modelling, 2 (1) 1-13. 

Umar, S. M.  and Zakari, F. I. (2020). Beta-Odd Generalized Exponential Family of Distribution. Benin  

Journal of Statistics. Vol. 3, pp. 41– 54. 



Journal of Statistical Modeling and Analytics  Vol 4(1), 1-13. 2022 
 

13 
 

Yousof, H.M., Korkmaz, M.C. and Sen, S. (2019). A New Two-Parameter Lifetime Model. Ann. Data.  

Sci. 8, 91–106. 

 
 

 
Appendix  
R codes for computing the likelihood function, maximum likelihood estimates for the 
first dataset. 
x=c(0.1, 0.33, 0.44, 0.56, 0.59,  0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1.0, 1.02, 
1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 
1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53,  1.59,  1.6, 1.63, 1.63, 1.68, 
1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 
2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 
4.58, 5.55). 

######################## 
fn<-function(parameter, x) 
{ 
alpha=parameter[1]   
theta=parameter[2] 
omega=parameter[3] 
L1<-log(theta^3)+log(omega)+log(x^(omega-1)) 
L2<-log(2*alpha+theta^2) 
L3<-log(1+alpha*x^(2*omega)) 
L4<-(theta*x^omega) 
LL=L1–L2+L3-L4 
Rmle<--sum(LL) 
Rmle 
} 
result<-optim(c(a0,b0,c0),fn,method="L-BFGS-B",lower=c(a0,b0,c0), 
upper=c(Inf,Inf,Inf), x) 
result 


